Justification-based Multiagent Learning
نویسندگان
چکیده
Committees of classifiers with learning capabilities have good performance in a variety of domains. We focus on committees of agents with learning capabilities where no agent is omniscient but has a local, limited, individual view of data. In this framework, a major issue is how to integrate the individual results in an overall result—usually a voting mechanism is used. We propose a setting where agents can express a symbolic justification of their individual results. Justifications can then be examined by other agents and accepted or found wanting. We propose a specific interaction protocol that supports revision of justifications created by different agents. Finally, the opinions of individual agents are aggregated into a global outcome using a weighted voting scheme.
منابع مشابه
A Multiagent Reinforcement Learning algorithm to solve the Community Detection Problem
Community detection is a challenging optimization problem that consists of searching for communities that belong to a network under the assumption that the nodes of the same community share properties that enable the detection of new characteristics or functional relationships in the network. Although there are many algorithms developed for community detection, most of them are unsuitable when ...
متن کاملImproving Coevolutionary Search for Optimal Multiagent Behaviors
Evolutionary computation is a useful technique for learning behaviors in multiagent systems. Among the several types of evolutionary computation, one natural and popular method is to coevolve multiagent behaviors in multiple, cooperating populations. Recent research has suggested that coevolutionary systems may favor stability rather than performance in some domains. In order to improve upon ex...
متن کاملImproving (Revolutionary Search for Optimal Multiagent Behaviors
Evolutionary computation is a useful technique for learning behaviors in multiagent systems. Among the several types of evolutionary computation, one natural and popular method is to coevolve multiagent behaviors in multiple, cooperating populations. Recenl research has suggested that r e v o lutionary systems may favor stability rather than performance in some domains. In order to improve upon...
متن کاملSolving the flexible job shop problem by hybrid metaheuristics-based multiagent model
The flexible job shop scheduling problem (FJSP) is a generalization of the classical job shop scheduling problem that allows to process operations on one machine out of a set of alternative machines. The FJSP is an NP-hard problem consisting of two sub-problems, which are the assignment and the scheduling problems. In this paper, we propose how to solve the FJSP by hybrid metaheuristics-based c...
متن کاملMultiagent Simulation of Collaboration and Scaffolding of a CSCL Environment
Multiagent techniques improves student learning in ComputerSupported Collaborative Learning (CSCL) environments through multiagent coalition formation and intelligent support to the instructors and students. Researchers designing the multiagent tools and techniques for CSCL environments are often faced with high cost, time, and effort required to investigate the effectiveness of their tools and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003